
Chapter 33 - SCATTERING FROM FRACTAL SYSTEMS 
 
 
Consider a system of interacting particles in a medium. The particles could have fractal 
(rough) surfaces or they could form a mass fractal structure through clustering. In general 
terms, the scattering cross section is given by: 
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( ) PVVNN φ==  is the particle number density, VP is the particle volume, φ is the 

particle volume fraction, P(Q) is the form factor, Δρ2 is the contrast factor and SI(Q) is 
the structure factor. The two types of fractal behavior (mass fractal and surface fractal) 
have been investigated (Bale-Schmidt, 1984; Teixeira, 1988) and will be discussed in 
turn.  
 
 
1. MASS FRACTAL 
 
A mass fractal is a structure containing branching and crosslinking to form a 3D network. 

 
 
Figure 1: Schematic representation of a mass fractal structure containing branching points 
and crosslinks. This structure is made out of monomeric units or small particles that are 
clustered.  
 
The inter-particle structure factor is given by: 
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Here g(r) is the pair correlation function. It is the probability of finding another scatterer 
at position r

r
 given that there is a scatterer at the origin. Defining a mass fractal 

dimension Dm, g(r) can be modeled as follows: 
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This comes from a particle number density that varies like a mass fractal: 
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The parameter ξ is a characteristic size for the mass fractal and r0 is the radius of the 
individual particles making up the fractal object.  Performing the Fourier transform, one 
obtains: 
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Note that tan-1(z) is also called arctan(z). The small-Q limit is obtained using standard 
expansions: 
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This gives an estimate of the radius of gyration for a mass fractal as: 
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The high-Q limit is obtained using the following expansion which yields the asymptotic 
Q-dependence: 
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for 1

0
1 rQ −− ≤≤ξ . This is a modified mDQ/1  behavior. The mass fractal dimension Dm 

varies between 2 and 3 and is equivalent to the Porod exponent. Note that when Dm = 2, 
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−  instead and the Porod exponent is Dm+1.  
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Figure 2: Normalized scattering intensity for the mass fractal model with and without the 
form factor P(Q) and with Rg = 100 Å and Dm = 3.  
 
Note that the form factor P(Q) for the individual particles that make up the mass fractal 
was modeled here by spheres or radius r0 with smooth surface. The case of particles with 
a fractal (i.e., rough) surface is considered next.  
 
 
2. SURFACE FRACTAL 
 
Consider a particle with fractal (rough) surface of fractal dimension Ds between 3 and 4.  



 

 
Figure 3: Schematic representation of a surface fractal structure of intermediate 
roughness.  
 
The Porod law can be generalized to fractal surfaces through the following scaling for the 
surface: 
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The form factor for the particle with fractal surface becomes at high-Q: 
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Note that this result yields zero for Ds = 3. In the case of the mass fractal model, a similar 
inconsistency was avoided by going to a higher term in the high-Q expansion.  
 
A Porod plot (Log[I(Q)] vs Q) yields a slope of -6+Ds. A surface fractal dimension Ds = 2 
corresponds to a smooth surface which, for high-Q, gives: 
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SP and VP are the particle surface and volume. This is the well known Porod law for 
smooth surfaces.  
 
 
3. FRACTAL POROD EXPONENTS 



 
A figure summarizes the various fractal Porod law exponents for mass fractal systems 
such as polymer chains and networks and for fractal surfaces.  
 

 
 
Figure 4: Assortment of fractal Porod exponents.  
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QUESTIONS 
 
1. What is the Porod exponent for scattering from a fully swollen polymer coil? 
2. What is the Porod exponent for scattering from a very rough surface? How about from 
a smooth surface? 
3. What is the range of mass fractal Porod exponents for scattering from a clustered 
network? 
 
 
ANSWERS 
 
1. The Porod exponent for scattering from a fully swollen polymer coil is 5/3.  
2. The Porod exponent for scattering from a very rough surface is 3. For a smooth 
surface, the Porod exponent is 4.  
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3. Scattering from a clustered network has a range of mass fractal Porod exponents 
between 2 and 3.  
 


